
The Universal Java Matrix Package: Everything is a Matrix!
Holger Arndt, Department of Computer Science, Technical University of Munich, 85747 Garching, Germany, Email: mail@holger-arndt.com

I. Introduction
Matrix operations form the basis of many
machine learning algorithms and have a
great impact on their total performance.
Therefore, it is essential to utilize fast al-
gorithms for matrix operations such as
multiplication or decomposition. As for
Java, however, programmers have to use
additional libraries for this purpose, since
Sun’s JDK does not provide a built-in
matrix implementation.
The most popular Java matrix libraries,
JAMA [8] and Colt [5], are slower than
necessary, as they cannot exploit multi-
threading on modern hardware. More-
over, they have not received updates for
a long time and are limited to certain
use cases. For example, JAMA can only
deal with two-dimensional dense matri-
ces with double values and is unuseable
for sparse or multi-dimensional data, or
other cell types.

II. The Universal Approach
UJMP, the Universal Java Matrix Pack-
age [3] is intended to be the “swiss army
knife” for linear algebra and data pro-
cessing in Java. It introduces a consistent
and unified data representation, which is
applicable to any kind of data with a rect-
angular shape. It supports:
• dense and sparse matrices,
• multi-dimensional matrices or tensors,
• arbitrary cell types including generics,
• up to 263 rows or columns,
• data sizes exceeding the capacity limit

of main memory.

ICML/MLOSS, Haifa, 2010-06-25

III. Data Storage
This great flexibility comes from the fact, that
UJMP introduces a hierarchy of interfaces,
abstract matrix classes and implementations
which is illustrated in Fig. 1:

Matrix Interface n-dimensional, dense/sparse, 2^63 rows/columns, various cell types

size

get/set cell

plus, minus

multiply, divide

transpose

min, max, mean

variance, std

sin, cos, tan

select rows/cols

get submatrix

import/export

visualization

Fu
nc

tio
n

De
cl

ar
at

io
ns

Abstract Matrix

D
ef

au
lt

Fu
nc

tio
n

Im
pl

em
en

ta
tio

ns

Abstract Matrix

D
ef

au
lt

Fu
nc

tio
n

Im
pl

em
en

ta
tio

ns

Abstract Matrix

D
ef

au
lt

Fu
nc

tio
n

Im
pl

em
en

ta
tio

ns

Matrix Implementations

Data in Memory
double[][]

int[][]
String[][]

Data on Disk
CSV, TXT

C
us

to
m

 F
un

ct
io

n
Im

pl
em

en
ta

tio
ns

Database Tables

JDBC

Matrix Libraries

JAMA
ojAlgo

Java Libraries

Matrix Implementations

Data in Memory
double[][]

int[][]
String[][]

Data on Disk
CSV, TXT

C
us

to
m

 F
un

ct
io

n
Im

pl
em

en
ta

tio
ns

Database Tables

JDBC

Matrix Libraries

JAMA
ojAlgo

Java Libraries

Matrix Implementations

Data in Memory
double[][]

int[][]
String[][]

Data on Disk
CSV, TXT

Data on Disk
CSV, TXT

C
us

to
m

 F
un

ct
io

n
Im

pl
em

en
ta

tio
ns

Database Tables

JDBC

Database Tables

JDBC

Matrix Libraries

JAMA
ojAlgo

Matrix Libraries

JAMA
ojAlgo

Java LibrariesJava Libraries

(list not complete)

Figure 1: Interface, abstract class and matrix implementations.

In fact, the underlying storage implementation
becomes secondary and we can say that, for
UJMP, everything is a matrix:
arrays of values in memory, binary files on disk,
JDBC database tables, Excel files, CSV files,
images, audio files, network graphs, Java col-
lection classes, and even other matrix libraries!

IV. Features
To facilitate data processing, UJMP does not
only offer basic methods for linear algebra
(plus, minus, transpose, inverse, solving equa-
tions) but also a large number of additional
functions important in machine learning and
scientific research (mean, variance, replacement
of missing values, mutual information, etc.), in-
terfaces to Matlab, Octave and R, import/ex-
port filters for many file types and visualization
methods. To deliver the best possible perfor-
mance, UJMP supports parallel execution with
multiple threads on modern hardware.

All matrix implementations can store additional
meta-information such as row or column labels.
Most operations can be executed in three dif-
ferent ways to reduce the memory footprint if
necessary (create a copy of the data, modify the
original matrix, or link an operation to the orig-
inal data). Iterators and a mechanism for auto-
matic entry conversion facilitates data access.

V. Integrating Other Libraries
Numerical algorithms may exhibit a very differ-
ent runtime performance, depending on matrix
size, number of CPUs, CPU type, memory ar-
chitecture, operating system and Java version.
It is virtually impossible to tune e.g. an algo-
rithm for singular value decomposition to work
equally well on all platforms. Therefore, UJMP
pursues a different approach and integrates 20
matrix libraries within one toolbox. If neces-
sary, UJMP can thus redirect matrix operations
to faster libraries to provide the best possible
performance. An example is illustrated in Fig.
2, where JAMA [8] is used for calculating a sin-
gular value decomposition on smaller matrices,
and ojAlgo [7] for sizes greater than 100x100:Sheet2

Page 1

2 3 4 5 10 20 50 100 200 500 1000 2000
0,1

1

10

JAMA
Colt
EJML
MTJ
ojAlgo
UJMP

matrix size

re
la

tiv
e

pe
rfo

rm
an

ce

Figure 2: Relative performance of SVD for matrix sizes between 2x2 and
2000x2000 on an Intel Xeon with 4 cores (through UJMP interface).

Other outstanding libraries, which can be used
to perform matrix decompositions are Parallel
Colt [9], Apache commons-math [2], MTJ [6],
EJML [1], ojAlgo [7], and jblas [4].

VI. Summary
The Universal Java Matrix Package is a
novel and innovative matrix library for
Java. Its extendable architecture makes
it ready for different data types and
large amounts of data. It can integrate
other matrix libraries for maximal per-
formance. Flexible calculation methods
beyond standard linear algebra functions
are provided, which can be applied in dif-
ferent ways to save memory.
However, the availability of documen-
tation remains to be improved, which
would make it easier for new users to
become acquainted with the concepts of
this library. As compensation, there is a
public online forum for Q&A.
It should be emphasized, that the Uni-
versal Java Matrix Package is licensed
under GNU LGPL, which allows its in-
tegration into commercial applications.
Source code and jar files are freely avail-
able through our website [3] in the hope
that it will attract many new users and de-
velopers. Everyone is welcome to con-
tribute!

References
[1] Peter Abeles, Efficient Java Matrix Library (EJML), http://code.google.

com/p/efficient-java-matrix-library/, 2010.

[2] Apache Software Foundation, Apache commons mathematics library, http://
commons.apache.org/math/, 2008.

[3] Holger Arndt, Markus Bundschus, and Andreas Nägele, Towards a next-
generation matrix library for Java, COMPSAC: International Computer Software
and Applications Conference (2009), http://ujmp.org.

[4] Mikio Braun, jblas: Linear Algebra for Java, http://jblas.org/, 2010.

[5] CERN – European Organization for Nuclear Research, Colt, http://acs.
lbl.gov/˜hoschek/colt/, 1999.

[6] B.-O. Heimsund, Matrix toolkits for Java (MTJ), http://ressim.
berlios.de/, 2006.

[7] Anders Petersson, ojAlgo, http://ojalgo.org/, 2010.

[8] The MathWorks and the National Institute of Standards and Technol-
ogy (NIST), JAMA: A Java matrix package, http://math.nist.gov/
javanumerics/jama/, 2005.

[9] Piotr Wendykier, Parallel Colt, http://sites.google.com/site/
piotrwendykier/software/parallelcolt, 2010.

