
From Informal Project Management Artifacts to Formal
System Models

Jonas Helming, Nitesh Narayan, Holger Arndt,

Maximilian Koegel, Walid Maalej
Technische Universität München

Bolzmannstraße 3
85748 Garching

{helming, narayan, arndt, koegel, maalejw}@in.tum.de

ABSTRACT
Software systems are specified with formal artifacts such as
requirements or architecture models. However, informal project
artifacts such as bug reports, tasks or discussion threads also
include relevant information about the respective software
systems and their development. It is beneficial to externalize such
information in formalized representations, e.g. to increase the
automation of development activities.

In this paper we describe a model that integrates formal system
models and informal artifacts of software development projects.
We show how this integration eases the manual transition of
information from project management artifacts to system models,
and discuss how this transition can be automated. To facilitate this
transition we propose an approach for the automated identification
of informal management artifacts, which contain information
about functional requirements and other system specifications
such as classes.

Categories and Subject Descriptors
D.2.1 [Requirements/Specifications]: Elicitation Methods and
Tools, D.2.2 [Design Tools and Techniques]: Elicitation
Methods and Tools

General Terms
Management, Documentation, Design, Experimentation

Keywords
System model, Project model, Requirement Detection,
Formalization

1. INTRODUCTION
The documentation of software development projects consists of
two different types of artifacts. On the one hand there are formal
artifacts describing the system under construction on different
levels of abstraction such as functional requirements, UML
models and detailed system specifications. We call these artifacts

system models. On the other hand other artifacts rather describe
the project itself in terms of tasks, bug reports and informal
communication. We call these artifacts project models.

Both, system models and project model are subject to change. For
example requirements or bug report change over time. We claim
that changes are often reflected in project models rather than in
system models [1]. Repositories for project models such as bug
trackers, task management systems or simple to-do lists are often
accessed more informally then system specifications. As a
consequence developers update project models such as tasks on a
daily basis. It is even a trend in current software development to
open these repositories to other groups beside the project
management such as end-users allowing them to enter new work
items [2].
Changes applied in informal project model are often not
propagated to the more formalized models. This is also true for
new elements such as a bug report raising a new requirement. In a
survey, developers stated that “Changes of requirements are
documented in minutes, change requests or in test cases“ “there is
often no time left, to repeat work done in other tools, just to have
everything consistent”. „As a consequence, requirements
documents are nothing but a data tomb“ [3].
Formal documentation is beneficial for several reasons. In an
extensive case study, Charette found that most failures of software
projects are caused by improperly defined system requirements
[4]. Lamsweerde claims that formal requirements are essential for
the design, documentation, communication, reengineering and
reuse [5]. Throughout the evolution of the software applications,
the original requirements, become blurred, outdated and
eventually lost. This “requirement loss” problem becomes critical
when the need arises for migrating existing system to new or
different platform or execution environment [6]. This might have
severe impact on the maintenance cost because the correct
understanding of the existing software and code base is an integral
part for maintenance tasks [7], [8].
This paper is a part of a larger research towards a unified
management of both, formal and informal information in software
engineering projects. Our goal is to support the externalization of
relevant information from informal project models to formal
system models.
The contribution of the paper is twofold. First it shows how
traceability between projects models and system models supports
software engineers in propagating changes from project models to
system models. In other words we show how traceability enables
the formalization of informal information. Second, we show in

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
Conference’04, Month 1–2, 2004, City, State, Country.
Copyright 2004 ACM 1-58113-000-0/00/0004…$5.00.

this paper, how this formalization process can be automated by
identifying parts of the project models that should be formalized.

OUTLINE
We provide an overview of related approaches in section 2. In
section 3, we present UNICASE a tool that supports explicit
traceability between different levels of abstraction and between
system models and project models. In section 4 we show how
changes in project models are manually propagated to system
models in UNICASE. Furthermore we shortly introduce four case
studies, conducted in UNICASE. In section 5 we suggest
approaches to semi-automatically support this propagation. As we
present ongoing work, these approaches are not evaluated yet. The
feasibility and benefits of the approaches are therefore subject to
discussion. We conclude and discuss our results in section 6.

2. RELATED WORK
The externalization of informal requirements to formal

specifications has been a major area of research and concern in
the field of software development. But in the past the requirement
elicitation has often been considered a one time job [9], [10], [11].
This is only the case for legacy projects or systems that do not
evolve rapidly and only have to cope with the requirements of a
defined customer. But with the evolution of Open Source
Software (OSS) communities and agile methods the environment
has changed completely. In open source projects almost all
requirements are embedded in informal communication and the
development starts with limited sets of informally communicated
requirements. Scacchi [12] presents an extensive case study
showing how informal artifacts like bug reports, discussion board
and issue tracking systems etc. are used to refine, capture and
express system requirements within OSS development and
remains an inevitable part.

OSS repositories contains vast amounts of historical data and
development pattern which has given rise to extensive research in
terms of mining and extraction of the useful knowledge to further
refine the underlying principle of software development to fit with
evolving software development processes. A major body of
research in terms of mining software repositories is based on
natural language processing and rely primarily on identifying the
semantic relationship between various entities of concern [13-17].

 Research practices within this problem domain has produced
considerable number of results, but to our best knowledge none of
the existing approaches proposed the transition of information
from informal project models to system models.

 However there are several approaches mining informal
project models such as bug reports. Maalej et al. ([18] and [19])
use linguistic processing to analyze work description artifacts
(such as commit messages and work logs) and discuss
possibilities of automating the creation and usage of work
descriptions. Ko et al. [20] present a very similar linguistic
approach, focusing on the title of the bug reports as the primary
data source for analysis. Both approaches focus on the linguistic
analysis of the informal artifacts. The goal is formalize them and
mining useful information about the development process.

Fischer et al. [21] focus on analyzing the proximity of
software features based on modification and problem report (bug
reports) data. Finally they create a visualization of the tracked
features to mine hidden dependencies and information. Populating
and querying database to extract meaningful and evolution related
information remains a major concern of research [22], [13]. These
research works consider emails, version control systems and bug

tracking system as primary source of information. German et al.
[23] uses software trails to reconstruct the evolution of a software
system.

Specification discovery from reverse-engineering software
traces remains an active area of research. Lo et al.[7] proposes an
approach to mine software specifications by employing pattern
mining and rule mining techniques on the execution traces of the
software system. Reverse Engineering approaches try to
reconstruct system models from the source code, but not from
informal project models.

3. UNICASE
Our analysis and suggested support for identifying system

models are based on a unified model implemented in the tool
UNICASE [8]. UNICASE provides a repository, which can
handle arbitrary types of software engineering artifacts. These
artifacts can either be part of the system model, i.e. the
requirements model and the system specification, or the project
model, such as work items or information on developers [1]. All
concepts presented in this paper are also applicable on an
environment where separate tools for system modeling and project
modeling are used, as long as they are integrated with each other.
We chose UNICASE, as the unified approach because it eases the
data analysis without dealing with different data sources.

Figure 1: Excerpt from the unified model of UNICASE (UML

class diagram)
Figure 1 shows an excerpt of relevant artifacts for our

approach. The most important part is the association between
work item and system model element. Work items in UNICASE
can be issues, tasks or bug reports. In previous work [1], we
showed how work items in UNICASE can be linked to the related
system model elements modeled by the association isObjectOf.
This expresses that activities conducted on the work item are
related to the system model element or to its representation in the
implementation. The type of relation is depending on the activity
of the work item. For example an implementation work item
linked to a requirement, means that this work needs to be done to
fulfill the requirement. Or, an analysis work item related to a use
case needs to be closed to finish the specification of the use case.

UNICASE is implemented as an Eclipse Plugin. As
developers in our case-studies (chapter 4 and 5) used Eclipse for
development, the tool is directly integrated in their daily work
environment. Therefore all artifacts are directly accessible for
developers in the same tool.

4. MANUAL PROPAGATION
In this section we show how relations between informal

project models and system models support the change propagation
between both models. In previous work we have compared two
groups of system model elements [1]. While the first group was
linked to corresponding work items, the second group was not.

We compared both groups based on two metrics, the number of
changes and the up-to-dateness at the end of the project. The up-
to-dateness was assessed by the project lead. The group with
linked work items had significantly more changes and also was
significantly more up-to-date. We were also able to correlate the
number of linked work items with both metrics. This supports the
assumption that traceability enables manual change propagation
from work items to corresponding system models.

As a continuation of this work we were interested whether
system models are also created based on existing work items. As
an example a new bug report may contain a new requirements,
which is externalized as a corresponding artifact. As another
example an implementation task may mention a certain
component in its description, which is later on added in the system
documentation. We do not claim this behavior to be a direct result
of the integration between system models and project models. In
fact the integration enables us to measure the occurrence of such
events. We analyzed the data of four case studies using UNICASE
for system modeling and management. DOLLI 2 and DOLLI 3
are large student projects in collaboration with the Munich Airport
as an industrial partner. Kings Tale is an ongoing industrial
development project of a browser game. As a forth projects we
analyzed the data of the UNICASE project itself.

We investigated system model elements, which were linked
to work items. For these elements we compared the date of
creation. Whenever one of the linked work items was created
earlier then the corresponding system model elements, we claim
that this system model element was derived from the project
model. Please note that this is a conservative measurement as
there might be work items with an earlier creation date, which are
just not linked.

 Total Hits Percentage

DOLLI 2 120 24 20%
DOLLI 3 146 37 25%

Kings Tale 64 12 19%

UNICASE 446 84 19%

Table 1: System model elements created after corresponding
work items.

A detailed statistical analysis goes beyond the scope of this paper.
In fact this analysis can only be treated as a strong hint that a
percentage of system models is derive from work items. This
percentage is surprisingly high, especially for the two DOLLI
projects, which followed a sequential process for requirements
engineering and system design. Our next step will be to match
these numbers with the results of user based surveys to
substantiate the applied metric.

5. IDENTIFYING SYSTEM MODELS
In this section we propose approaches to automatically identify
parts of the project model, which should be externalized in formal
system models. We focus on the identification of requirements,
classes and components. However, we believe that the suggested
approaches are also applicable to identify other types of system
models, like test cases or non-functional requirements.
We think that the most important step, which can and shall be
supported automatically, is the identification of information to be
externalized. Although a system could also provide support for the
externalization itself, we believe, that this step remains to be done

manually by the user. We suggest supporting the externalization
by offering workflow support. As an example the system could
offer a wizard to create a new requirement based on a work item.
However this support is very specific, we will focus on the
identification. In the following we present approaches for the
identification of requirements, as well as classes and components.

5.1 Identifying Requirements
To get an inside we manually looked at 200 randomly selected
work items from the project UNICASE. Our goal was to find out,
how many informal project model artifacts contain information,
which should be added in the formal requirements model. We
identified two main types of occurrence. First tasks, which are
related to the implementation of a requirement, describe the
requirement redundantly and add more details, i.e. refining the
specification. Second there were Bug Reports, which do not
describe a failure, but propose to change requirements or even
propose new features. The result of the manual classification
shows that 20 % of the work items contain such information. Our
goal is to identify those work items automatically. A closer look at
the work items reveals, that informal requirements specifications
often use certain words and formulations. A very obvious example
is the use of the word “should”. Even if “should” is a anti-word
for requirements [24] it is often used in informal specifications
such as ”The setting should be user specific…”. To substantiate
this hypothesis specifically for the UNICASE project we
conducted a second experiment. We randomly sampled 50 work
items of two groups. The first group of work items contains the
word “should”, the second not. An independent UNICASE
developer classified the work items. We compared the result of
both groups.
For the two samples we calculate 95% confidence interval for the
binomial distribution’s probability p. In other words, given the
sample the parameter p of the distribution is with 95% probability
in this interval. We calculate the interval based on the following
formula by using the arithmetical average as a maximum
likelihood estimate for p, where k is the number of instances of
the sample where the variable is true and a is the constant for the
respective significance level (1.96 for 95%).

€

k
n
− p ≤ a∗ (p∗ (1− p)

n

The 95% confidence interval for the group without the word
“should” is [0.0556, 0.2859], while the other group results in the
interval [0.2964, 0.9036]. The intervals for both samples do not
overlap. Thus we can accept the hypothesis that work items in the
UNICASE project containing the word „should“ describe
requirements more often. Based on this experiment the approach
to identify all work items containing the word “should” had to a
precision of 60,0% and a recall of 46,1%.
However this result is very specific to the UNICASE project, for a
general applicability, we need a more flexible approach. Therefore
have also evaluated a basic machine learning approach to
automate the process of detecting requirements in work items.
Work items have been transformed into a „bag of words“ matrix
representation, where each row represents a work item and each
column specifies if a given word is present in the description text

(or in the label) of this item or not. A part of this matrix has been
used to train a support vector machine classifier (SVM) using the
Java Data Mining Package (JDMP) [25]. The remaining part of
the data served as a test set, which was used to compare the output
of the classifier with the true values. This procedure has been
repeated in a ten-times-ten-fold cross-validation scheme, where
alternating parts of the data were used as training and test set. This
technique was used to estimate the accuracy of this classifier.
However, we found that this basic machine learning approach was
not able to detect requirements sufficiently well, as the results
were not significantly better than what would have been achieved
by chance. This does not necessarily mean, that automatic
detection of requirements is impossible. Instead, we suppose, that
our data set was too small to serve as a reliable indicator for the
structural difference between requirement-related text and other
information such as bug reports. Secondly, our machine learning
approach should be seen as a very first test which should be
improved, especially through a better pre-processing of the data
using tf-idf scaling (term frequency / inverse document
frequency), and algorithms which take into account relations
within the text. This will be subject to further research.

5.2 Identifying Classes and Components
By mining work items, we found out, that classes and components
of the system under construction are often used as nouns, even if
they are not explicitly modeled [26]. Out goal is to identity this
implicit system models. Therefore we used the Stanford Log-
linear Part-Of-Speech Tagger [27] to identify the noun words
occurring frequently within the informal textual data obtained
from the project model. We created a list of nouns and their
frequency of occurrence in work items. This list was presented to
a project member. They determined, whether a noun is the name
of a class or component, which should be part of the system
model. We conducted this experiment in two projects, the
UNICASE development project as a very large data set and the
Kings Tale development project as a small data set.
The Kings Tale project showed promising results, 66,7% of words
with an occurrence of 5 or more were classified as classes or
components. In contrast, the result did not produce any valuable
results for the UNICASE project. We believe this is due to the
size of the project. In UNICASE several trivial words like
“Developer” or “Bug” were suggested. Therefore we intend to
apply the machine learning approach described above also to
identify classes and components. However, as these tasks are not
binary classification problems and the desired result can come
from a set of classes and components (multi-class or even multi-
label classification), this is even more demanding. Therefore, it
might be necessary to apply more sophisticated approaches for
these tasks.

One approach we would like to evaluate is sequence labeling
using conditional random fields (CRF) [28]. This approach does
not process work item as a whole, but instead is able to detect
certain concepts in subsections of the description text. Like hidden
Markov models (HMM), this approach takes into account
relations between words and their positions in a sentence, and we
suppose that it could be able to deal with difficult cases, e.g.
differentiate between "a software bug in UNICASE" and "the Bug
class used to represent bugs in other software projects".

It may also be interesting to evaluate clustering algorithms.
They could give valuable insight to the inherent structure of a
software project, when nothing about it is known in advance. The

results could form the basis for semi-supervised classification
algorithms, which could then be validated and improved through
human experts.

6. CONCLUSION AND DISCUSSION
In this paper we discussed the externalization of information from
informal project models such as tasks or bug reports to formal
system models such as requirements or classes.
In the first part we showed how the integration and traceability
between both kinds of models supports manual change
propagation from informal to formal artifacts. In future work, we
want to observe this behavior more in detail. Interesting future
research questions are whether there is user specific behavior in
the manual propagation and what events might be triggered for
this behavior. We measured the percentage of system models,
which were created after a corresponding project model element.
Although the percentage seems to be high, it has to be compared
with results from projects not using an integrated environment
such as UNICASE.
In the second part we suggested approaches to automatically
identify formal system model elements, which are actually
captured in informal artifacts. A typical example is a requirement
described in a bug report. We presented ongoing research and
initial results based on experiments. Our results show the general
feasibility of an automated support. As an example an occurrence
of the word “should” often indicates an informal captured
requirement. In a second example we show that in a specific
project, nouns, which occur very often in project models indicate
classes and components. For both experiments we only measured
the precision, but not the completeness (recall) of the identified
elements. That means we did not measure how many project
model elements contain information about system models and
were not identified by our suggested approaches. This is part of
future work. Furthermore, the experiments with good results are
very project specific. The generalization of the approach by the
use of machine learning has to be refined as part of future work.
As shown in an initial experiment, the amount of necessary
training data might be a problem. Therefore we believe a mixture
of both, project specific and general solutions would lead to the
best results.
An open question is the workflow of presenting the results of an
automated identification to the user. We believe it might not be
beneficial to run the identification while users enter informal
project models. First this could restrict their habits used way of
informally adding new ideas and feedback. Second users might
adapt to this identification by avoiding specific phrases and
words. An alternative workflow of presenting results of the
identification is the recommendation of a list of work items to be
externalized to a responsible person, e.g. the project manager.
This could be done on a regular basis, e.g. for every release. We
believe this workflow would produce synergy effects especially if
more than one work items affects a single system model element.
Finally the value of automated identification of system models is
subject to discussion. The required precision and especially
completeness (recall) of identified elements depends on the goal
of the user and is therefore project specific. While even with a low
precision automation is useful, a low recall could render the
approach useless since no completeness can be achieved.

7. REFERENCES
[1] J. Helming, J. David, M. Koegel, und H. Naughton,

“Integrating System Modeling with Project Management–a
Case Study,” International Computer Software and
Applications Conference, COMPSAC 2009, 2009.

[2] E. Raymond, “The cathedral and the bazaar,” Knowledge,
Technology & Policy, vol. 12, 1999, S. 23–49.

[3] W. Maalej, “Task-First or Context-First? Tool Integration
Revisited,” 2009 IEEE/ACM International Conference on
Automated Software Engineering, Los Alamitos: IEEE
Computer Society, 2009.

[4] R.N. Charette, “Why software fails,” IEEE spectrum, vol.
42, 2005, S. 36.

[5] A.V. Lamsweerde, “Formal specification: a roadmap,”
Proceedings of the Conference on The Future of Software
Engineering, Limerick, Ireland: ACM, 2000, S. 147-159.

[6] M. El-Ramly, E. Stroulia, und P. Sorenson, “Recovering
software requirements from system-user interaction
traces,” Proceedings of the 14th international conference
on Software engineering and knowledge engineering,
Ischia, Italy: ACM, 2002, S. 447-454.

[7] D. Lo und S.C. Khoo, “Mining patterns and rules for
software specification discovery,” Proceedings of the
VLDB Endowment archive, vol. 1, 2008, S. 1609–1616.

[8] P. Jalote, An integrated approach to software engineering,
Springer, 1997.

[9] B. Belkhouche und J. Kozma, “Semantic case analysis of
informal requirements,” Proceedings of the Fourth Next
Generation CASE Tools, La Sorbonne, Paris, 1993.

[10] J.F.M. Burg und R.P. Van de Riet, “Analyzing informal
requirements specifications: a first step towards conceptual
modeling,” Applications of natural language to
information systems: proceedings of the second
international workshop, June 26-28, 1996, Amsterdam,
The Netherlands, 1996, S. 15.

[11] R. Clark und A. Moreira, “Constructing formal
specifications from informal requirements,” Software
Technology and Engineering Practice, 1997, S. 68–75.

[12] W. Scacchi, “Understanding the requirements for
developing open source software systems,” IEE
Proceedings-Software, vol. 149, 2002, S. 24–39.

[13] M. Fischer, M. Pinzger, und H. Gall, “Populating a release
history database from version control and bug tracking
systems,” Proceedings of the International Conference on
Software Maintenance, 2003, S. 23.

[14] D. Lubar, It's Not a Bug, It's a Feature!: Computer Wit and
Wisdom, Addison-Wesley, Reading, Mass., 1995.

[15] G. Antoniol, K. Ayari, M. Di Penta, F. Khomh, und Y.G.
Guéhéneuc, “Is it a bug or an enhancement?: a text-based
approach to classify change requests,” Proceedings of the
2008 conference of the center for advanced studies on
collaborative research: meeting of minds, 2008.

[16] H.G. Perez-Gonzalez und J.K. Kalita, “Automatically

generating object models from natural language analysis,”
Conference on Object Oriented Programming Systems
Languages and Applications, 2002, S. 86–87.

[17] A. Hudaib, B. Hammo, und Y. Alkhader, “Towards
software requirements extraction using natural language
approach,” Proceedings of the 6th WSEAS International
Conference on Software Engineering, Parallel and
Distributed Systems table of contents, 2007, S. 155–160.

[18] W. Maalej und H. Happel, “From work to word: How do
software developers describe their work?,” Mining
Software Repositories, 2009. MSR '09. 6th IEEE
International Working Conference on, 2009, S. 121 – 130.

[19] W. Maalej und H. Happel, “Can Development Work
Describe Itself?,” Submitted To: Mining Software
Repositories, 2009. MSR '09. 6th IEEE International
Working Conference on, 2010.

[20] A.J. Ko, B.A. Myers, und D.H. Chau, “A linguistic
analysis of how people describe software problems,”
Proceedings of the Visual Languages and Human-Centric
Computing, 2006, S. 127–134.

[21] M. Fischer, M. Pinzger, und H. Gall, “Analyzing and
relating bug report data for feature tracking,” Proceedings
of the 10th Working Conference on Reverse Engineering
(WCRE 2003), 2003, S. 90–99.

[22] O. Alonso, P. Devanbu, und M. Gertz, “Database
techniques for the analysis and exploration of software
repositories,” MSR, S. 37–41.

[23] D.M. German, “Using software trails to reconstruct the
evolution of software,” Journal of Software Maintenance
and Evolution Research and Practice, vol. 16, 2004, S.
367–384.

[24] W.M. Wilson, L.H. Rosenberg, und L.E. Hyatt,
“Automated analysis of requirement specifications,”
Proceedings of the Nineteenth International Conferences
on Software Engineering (ICSE-97), S. 161–171.

[25] H. Arndt, “The Java Data Mining Package - A Data
Processing Library for Java,” 33rd Annual IEEE
International Computer Software and Applications
Conference (COMPSAC), 2009, S. 620 – 621.

[26] L. Kof, “Text analysis for requirements engineering,”
Dissertation, Technische Universit\ät M\ünchen, 2005.

[27] K. Toutanova, D. Klein, C.D. Manning, und Y. Singer,
“Feature-rich part-of-speech tagging with a cyclic
dependency network,” Proceedings of the 2003 Conference
of the North American Chapter of the Association for
Computational Linguistics on Human Language
Technology-Volume 1, 2003, S. 180.

[28] J. Lafferty, A. McCallum, und F. Pereira, “Conditional
random fields: Probabilistic models for segmenting and
labeling sequence data,” MACHINE LEARNING-
INTERNATIONAL WORKSHOP THEN CONFERENCE-,
2001, S. 282–289.

