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ABSTRACT 
Software systems are specified with formal artifacts such as 
requirements or architecture models. However, informal project 
artifacts such as bug reports, tasks or discussion threads also 
include relevant information about the respective software 
systems and their development. It is beneficial to externalize such 
information in formalized representations, e.g. to increase the 
automation of development activities. 

In this paper we describe a model that integrates formal system 
models and informal artifacts of software development projects. 
We show how this integration eases the manual transition of 
information from project management artifacts to system models, 
and discuss how this transition can be automated. To facilitate this 
transition we propose an approach for the automated identification 
of informal management artifacts, which contain information 
about functional requirements and other system specifications 
such as classes. 

Categories and Subject Descriptors 
D.2.1 [Requirements/Specifications]: Elicitation Methods and 
Tools, D.2.2 [Design Tools and Techniques]: Elicitation 
Methods and Tools 

General Terms 
Management, Documentation, Design, Experimentation 

Keywords 
System model, Project model, Requirement Detection, 
Formalization 

1. INTRODUCTION 
The documentation of software development projects consists of 
two different types of artifacts. On the one hand there are formal 
artifacts describing the system under construction on different 
levels of abstraction such as functional requirements, UML 
models and detailed system specifications. We call these artifacts 

system models. On the other hand other artifacts rather describe 
the project itself in terms of tasks, bug reports and informal 
communication. We call these artifacts project models. 

Both, system models and project model are subject to change. For 
example requirements or bug report change over time. We claim 
that changes are often reflected in project models rather than in 
system models [1]. Repositories for project models such as bug 
trackers, task management systems or simple to-do lists are often 
accessed more informally then system specifications. As a 
consequence developers update project models such as tasks on a 
daily basis. It is even a trend in current software development to 
open these repositories to other groups beside the project 
management such as end-users allowing them to enter new work 
items [2].  
Changes applied in informal project model are often not 
propagated to the more formalized models. This is also true for 
new elements such as a bug report raising a new requirement. In a 
survey, developers stated that “Changes of requirements are 
documented in minutes, change requests or in test cases“ “there is 
often no time left, to repeat work done in other tools, just to have 
everything consistent”. „As a consequence, requirements 
documents are nothing but a data tomb“ [3]. 
Formal documentation is beneficial for several reasons. In an 
extensive case study, Charette found that most failures of software 
projects are caused by improperly defined system requirements 
[4]. Lamsweerde claims that formal requirements are essential for 
the design, documentation, communication, reengineering and 
reuse [5]. Throughout the evolution of the software applications, 
the original requirements, become blurred, outdated and 
eventually lost. This “requirement loss” problem becomes critical 
when the need arises for migrating existing system to new or 
different platform or execution environment [6]. This might have 
severe impact on the maintenance cost because the correct 
understanding of the existing software and code base is an integral 
part for maintenance tasks [7], [8]. 
This paper is a part of a larger research towards a unified 
management of both, formal and informal information in software 
engineering projects. Our goal is to support the externalization of 
relevant information from informal project models to formal 
system models. 
The contribution of the paper is twofold. First it shows how 
traceability between projects models and system models supports 
software engineers in propagating changes from project models to 
system models. In other words we show how traceability enables 
the formalization of informal information. Second, we show in 
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this paper, how this formalization process can be automated by 
identifying parts of the project models that should be formalized. 

OUTLINE 
We provide an overview of related approaches in section 2. In 
section 3, we present UNICASE a tool that supports explicit 
traceability between different levels of abstraction and between 
system models and project models. In section 4 we show how 
changes in project models are manually propagated to system 
models in UNICASE. Furthermore we shortly introduce four case 
studies, conducted in UNICASE. In section 5 we suggest 
approaches to semi-automatically support this propagation. As we 
present ongoing work, these approaches are not evaluated yet. The 
feasibility and benefits of the approaches are therefore subject to 
discussion. We conclude and discuss our results in section 6. 

2. RELATED WORK 
The externalization of informal requirements to formal 

specifications has been a major area of research and concern in 
the field of software development. But in the past the requirement 
elicitation has often been considered a one time job [9], [10], [11]. 
This is only the case for legacy projects or systems that do not 
evolve rapidly and only have to cope with the requirements of a 
defined customer. But with the evolution of Open Source 
Software (OSS) communities and agile methods the environment 
has changed completely. In open source projects almost all 
requirements are embedded in informal communication and the 
development starts with limited sets of informally communicated 
requirements. Scacchi [12] presents an extensive case study 
showing how informal artifacts like bug reports, discussion board 
and issue tracking systems etc. are used to refine, capture and 
express system requirements within OSS development and 
remains an inevitable part. 

OSS repositories contains vast amounts of historical data and 
development pattern which has given rise to extensive research in 
terms of mining and extraction of the useful knowledge to further 
refine the underlying principle of software development to fit with 
evolving software development processes. A major body of 
research in terms of mining software repositories is based on 
natural language processing and rely primarily on identifying the 
semantic relationship between various entities of concern [13-17]. 

 Research practices within this problem domain has produced 
considerable number of results, but to our best knowledge none of 
the existing approaches proposed the transition of information 
from informal project models to system models.  

 However there are several approaches mining informal 
project models such as bug reports. Maalej et al. ([18] and [19]) 
use linguistic processing to analyze work description artifacts 
(such as commit messages and work logs) and discuss 
possibilities of automating the creation and usage of work 
descriptions. Ko et al. [20] present a very similar linguistic 
approach, focusing on the title of the bug reports as the primary 
data source for analysis. Both approaches focus on the linguistic 
analysis of the informal artifacts. The goal is formalize them and 
mining useful information about the development process. 

Fischer et al. [21] focus on analyzing the proximity of 
software features based on modification and problem report (bug 
reports) data. Finally they create a visualization of the tracked 
features to mine hidden dependencies and information. Populating 
and querying database to extract meaningful and evolution related 
information remains a major concern of research [22], [13]. These 
research works consider emails, version control systems and bug 

tracking system as primary source of information. German et al. 
[23] uses software trails to reconstruct the evolution of a software 
system.  

Specification discovery from reverse-engineering software 
traces remains an active area of research. Lo et al.[7] proposes an 
approach to mine software specifications by employing pattern 
mining and rule mining techniques on the execution traces of the 
software system. Reverse Engineering approaches try to 
reconstruct system models from the source code, but not from 
informal project models. 

3. UNICASE 
Our analysis and suggested support for identifying system 

models are based on a unified model implemented in the tool 
UNICASE [8]. UNICASE provides a repository, which can 
handle arbitrary types of software engineering artifacts. These 
artifacts can either be part of the system model, i.e. the 
requirements model and the system specification, or the project 
model, such as work items or information on developers [1]. All 
concepts presented in this paper are also applicable on an 
environment where separate tools for system modeling and project 
modeling are used, as long as they are integrated with each other. 
We chose UNICASE, as the unified approach because it eases the 
data analysis without dealing with different data sources. 
 

 
Figure 1: Excerpt from the unified model of UNICASE (UML 

class diagram) 
Figure 1 shows an excerpt of relevant artifacts for our 

approach. The most important part is the association between 
work item and system model element. Work items in UNICASE 
can be issues, tasks or bug reports. In previous work [1], we 
showed how work items in UNICASE can be linked to the related 
system model elements modeled by the association isObjectOf. 
This expresses that activities conducted on the work item are 
related to the system model element or to its representation in the 
implementation. The type of relation is depending on the activity 
of the work item. For example an implementation work item 
linked to a requirement, means that this work needs to be done to 
fulfill the requirement. Or, an analysis work item related to a use 
case needs to be closed to finish the specification of the use case. 

UNICASE is implemented as an Eclipse Plugin. As 
developers in our case-studies (chapter 4 and 5) used Eclipse for 
development, the tool is directly integrated in their daily work 
environment. Therefore all artifacts are directly accessible for 
developers in the same tool. 

4. MANUAL PROPAGATION 
In this section we show how relations between informal 

project models and system models support the change propagation 
between both models. In previous work we have compared two 
groups of system model elements [1]. While the first group was 
linked to corresponding work items, the second group was not. 



We compared both groups based on two metrics, the number of 
changes and the up-to-dateness at the end of the project. The up-
to-dateness was assessed by the project lead. The group with 
linked work items had significantly more changes and also was 
significantly more up-to-date. We were also able to correlate the 
number of linked work items with both metrics. This supports the 
assumption that traceability enables manual change propagation 
from work items to corresponding system models. 

As a continuation of this work we were interested whether 
system models are also created based on existing work items. As 
an example a new bug report may contain a new requirements, 
which is externalized as a corresponding artifact. As another 
example an implementation task may mention a certain 
component in its description, which is later on added in the system 
documentation. We do not claim this behavior to be a direct result 
of the integration between system models and project models. In 
fact the integration enables us to measure the occurrence of such 
events. We analyzed the data of four case studies using UNICASE 
for system modeling and management. DOLLI 2 and DOLLI 3 
are large student projects in collaboration with the Munich Airport 
as an industrial partner. Kings Tale is an ongoing industrial 
development project of a browser game. As a forth projects we 
analyzed the data of the UNICASE project itself. 

We investigated system model elements, which were linked 
to work items. For these elements we compared the date of 
creation. Whenever one of the linked work items was created 
earlier then the corresponding system model elements, we claim 
that this system model element was derived from the project 
model. Please note that this is a conservative measurement as 
there might be work items with an earlier creation date, which are 
just not linked. 

 
 Total Hits Percentage 

DOLLI 2 120 24 20% 
DOLLI 3 146 37 25% 

Kings Tale 64 12 19% 

UNICASE 446 84 19% 

Table 1: System model elements created after corresponding 
work items. 

A detailed statistical analysis goes beyond the scope of this paper. 
In fact this analysis can only be treated as a strong hint that a 
percentage of system models is derive from work items. This 
percentage is surprisingly high, especially for the two DOLLI 
projects, which followed a sequential process for requirements 
engineering and system design. Our next step will be to match 
these numbers with the results of user based surveys to 
substantiate the applied metric. 

5. IDENTIFYING SYSTEM MODELS 
In this section we propose approaches to automatically identify 
parts of the project model, which should be externalized in formal 
system models. We focus on the identification of requirements, 
classes and components. However, we believe that the suggested 
approaches are also applicable to identify other types of system 
models, like test cases or non-functional requirements. 
We think that the most important step, which can and shall be 
supported automatically, is the identification of information to be 
externalized. Although a system could also provide support for the 
externalization itself, we believe, that this step remains to be done 

manually by the user. We suggest supporting the externalization 
by offering workflow support. As an example the system could 
offer a wizard to create a new requirement based on a work item. 
However this support is very specific, we will focus on the 
identification. In the following we present approaches for the 
identification of requirements, as well as classes and components. 

5.1 Identifying Requirements 
To get an inside we manually looked at 200 randomly selected 
work items from the project UNICASE. Our goal was to find out, 
how many informal project model artifacts contain information, 
which should be added in the formal requirements model. We 
identified two main types of occurrence. First tasks, which are 
related to the implementation of a requirement, describe the 
requirement redundantly and add more details, i.e. refining the 
specification. Second there were Bug Reports, which do not 
describe a failure, but propose to change requirements or even 
propose new features. The result of the manual classification 
shows that 20 % of the work items contain such information. Our 
goal is to identify those work items automatically. A closer look at 
the work items reveals, that informal requirements specifications 
often use certain words and formulations. A very obvious example 
is the use of the word “should”. Even if “should” is a anti-word 
for requirements [24] it is often used in informal specifications 
such as ”The setting should be user specific…”. To substantiate 
this hypothesis specifically for the UNICASE project we 
conducted a second experiment. We randomly sampled 50 work 
items of two groups. The first group of work items contains the 
word “should”, the second not. An independent UNICASE 
developer classified the work items. We compared the result of 
both groups. 
For the two samples we calculate 95% confidence interval for the 
binomial distribution’s probability p. In other words, given the 
sample the parameter p of the distribution is with 95% probability 
in this interval. We calculate the interval based on the following 
formula by using the arithmetical average as a maximum 
likelihood estimate for p, where k is the number of instances of 
the sample where the variable is true and a is the constant for the 
respective significance level (1.96 for 95%). 
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The 95% confidence interval for the group without the word 
“should” is [0.0556, 0.2859], while the other group results in the 
interval [0.2964, 0.9036]. The intervals for both samples do not 
overlap. Thus we can accept the hypothesis that work items in the 
UNICASE project containing the word „should“ describe 
requirements more often. Based on this experiment the approach 
to identify all work items containing the word “should” had to a 
precision of 60,0% and a recall of 46,1%. 
However this result is very specific to the UNICASE project, for a 
general applicability, we need a more flexible approach. Therefore 
have also evaluated a basic machine learning approach to 
automate the process of detecting requirements in work items. 
Work items have been transformed into a „bag of words“ matrix 
representation, where each row represents a work item and each 
column specifies if a given word is present in the description text 



(or in the label) of this item or not. A part of this matrix has been 
used to train a support vector machine classifier (SVM) using the 
Java Data Mining Package (JDMP) [25]. The remaining part of 
the data served as a test set, which was used to compare the output 
of the classifier with the true values. This procedure has been 
repeated in a ten-times-ten-fold cross-validation scheme, where 
alternating parts of the data were used as training and test set. This 
technique was used to estimate the accuracy of this classifier. 
However, we found that this basic machine learning approach was 
not able to detect requirements sufficiently well, as the results 
were not significantly better than what would have been achieved 
by chance. This does not necessarily mean, that automatic 
detection of requirements is impossible. Instead, we suppose, that 
our data set was too small to serve as a reliable indicator for the 
structural difference between requirement-related text and other 
information such as bug reports. Secondly, our machine learning 
approach should be seen as a very first test which should be 
improved, especially through a better pre-processing of the data 
using tf-idf scaling (term frequency / inverse document 
frequency), and algorithms which take into account relations 
within the text. This will be subject to further research. 

5.2 Identifying Classes and Components 
By mining work items, we found out, that classes and components 
of the system under construction are often used as nouns, even if 
they are not explicitly modeled [26]. Out goal is to identity this 
implicit system models. Therefore we used the Stanford Log-
linear Part-Of-Speech Tagger [27] to identify the noun words 
occurring frequently within the informal textual data obtained 
from the project model. We created a list of nouns and their 
frequency of occurrence in work items. This list was presented to 
a project member. They determined, whether a noun is the name 
of a class or component, which should be part of the system 
model. We conducted this experiment in two projects, the 
UNICASE development project as a very large data set and the 
Kings Tale development project as a small data set. 
The Kings Tale project showed promising results, 66,7% of words 
with an occurrence of 5 or more were classified as classes or 
components. In contrast, the result did not produce any valuable 
results for the UNICASE project. We believe this is due to the 
size of the project. In UNICASE several trivial words like 
“Developer” or “Bug” were suggested. Therefore we intend to 
apply the machine learning approach described above also to 
identify classes and components. However, as these tasks are not 
binary classification problems and the desired result can come 
from a set of classes and components (multi-class or even multi-
label classification), this is even more demanding. Therefore, it 
might be necessary to apply more sophisticated approaches for 
these tasks. 

One approach we would like to evaluate is sequence labeling 
using conditional random fields (CRF) [28]. This approach does 
not process work item as a whole, but instead is able to detect 
certain concepts in subsections of the description text. Like hidden 
Markov models (HMM), this approach takes into account 
relations between words and their positions in a sentence, and we 
suppose that it could be able to deal with difficult cases, e.g. 
differentiate between "a software bug in UNICASE" and "the Bug 
class used to represent bugs in other software projects". 

It may also be interesting to evaluate clustering algorithms. 
They could give valuable insight to the inherent structure of a 
software project, when nothing about it is known in advance. The 

results could form the basis for semi-supervised classification 
algorithms, which could then be validated and improved through 
human experts. 

6. CONCLUSION AND DISCUSSION 
In this paper we discussed the externalization of information from 
informal project models such as tasks or bug reports to formal 
system models such as requirements or classes.  
In the first part we showed how the integration and traceability 
between both kinds of models supports manual change 
propagation from informal to formal artifacts. In future work, we 
want to observe this behavior more in detail. Interesting future 
research questions are whether there is user specific behavior in 
the manual propagation and what events might be triggered for 
this behavior. We measured the percentage of system models, 
which were created after a corresponding project model element. 
Although the percentage seems to be high, it has to be compared 
with results from projects not using an integrated environment 
such as UNICASE. 
In the second part we suggested approaches to automatically 
identify formal system model elements, which are actually 
captured in informal artifacts. A typical example is a requirement 
described in a bug report. We presented ongoing research and 
initial results based on experiments. Our results show the general 
feasibility of an automated support. As an example an occurrence 
of the word “should” often indicates an informal captured 
requirement. In a second example we show that in a specific 
project, nouns, which occur very often in project models indicate 
classes and components. For both experiments we only measured 
the precision, but not the completeness (recall) of the identified 
elements. That means we did not measure how many project 
model elements contain information about system models and 
were not identified by our suggested approaches. This is part of 
future work. Furthermore, the experiments with good results are 
very project specific. The generalization of the approach by the 
use of machine learning has to be refined as part of future work. 
As shown in an initial experiment, the amount of necessary 
training data might be a problem. Therefore we believe a mixture 
of both, project specific and general solutions would lead to the 
best results. 
An open question is the workflow of presenting the results of an 
automated identification to the user. We believe it might not be 
beneficial to run the identification while users enter informal 
project models. First this could restrict their habits used way of 
informally adding new ideas and feedback. Second users might 
adapt to this identification by avoiding specific phrases and 
words. An alternative workflow of presenting results of the 
identification is the recommendation of a list of work items to be 
externalized to a responsible person, e.g. the project manager. 
This could be done on a regular basis, e.g. for every release. We 
believe this workflow would produce synergy effects especially if 
more than one work items affects a single system model element. 
Finally the value of automated identification of system models is 
subject to discussion. The required precision and especially 
completeness (recall) of identified elements depends on the goal 
of the user and is therefore project specific. While even with a low 
precision automation is useful, a low recall could render the 
approach useless since no completeness can be achieved. 
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