
D
RAFT

Towards a Next-Generation Matrix Library for

Java

Holger Arndt
Department of Computer Science
Technical University of Munich

85747 Garching, Germany
Email: arndt@ujmp.org

Markus Bundschus
Insitute for Computer Science

Ludwigs-Maximilians-Universität Muenchen
Oettingenstr. 67, 80538 Munich, Germany

Email: bundschu@ujmp.org

Andreas Naegele
Department of Computer Science
Technical University of Munich

85747 Garching, Germany
Email: naegele@ujmp.org

Abstract

Matrices are essential in many fields of computer science, especially
when large amounts of data must be handled efficiently. Despite this de-
mand for matrix software, we were unable to find a Java library which
was flexible enough to match all our needs. In this paper, we present
the Universal Java Matrix Package (UJMP), an innovative software ar-
chitecture in Java to store and process matrices with interfaces to external
data sources such as Excel files or SQL-databases, allowing to handle data
which would not fit into main memory. In contrast to all other approaches
which we are aware of, our package is the only one to support very large
matrices with up to 263 rows or columns. Th use of variable argument
lists provides a convenient way for accessing multi-dimensional data with-
out the need to specify dimensionality at compile time. Arbitrary data
types be handled through the use of Java Generics. Another key feature
is the strict separation of interfaces and classes, making data storage im-
plementation and math engine exchangeable, at runtime. This flexible
architecture allows the user to decide whether operations should be opti-
mized for speed or memory usage and makes the system easily extendable
through existing libraries, incorporating their individual strengths.

1



D
RAFT

1 Introduction

Matrix computations are essential in various fields of computer science, espe-
cially for data intensive tasks, occurring e.g. in machine learning, artificial
intelligence, or data mining. Another example is the analysis of graphs in col-
laborative networks which require large sparse adjacency matrices to store the
network structure. A remarkable amount of literature exists on the implemen-
tation of fast algorithms for matrix algebra, e.g. [1] or [2] and many of these al-
gorithms are available as libraries for the programming language of your choice,
e.g. the Fortran implementations LINPACK or LAPACK [3]. They use Ba-
sic Linear Algebra Subprograms (BLAS), which are divided into operations for
vectors, matrix–vector and matrix–matrix. An implementation for C is also
available and, additionally, the Fortran code has been translated to Java using
f2j forming the JLAPACK package [4].

The Java Development Kit (JDK) itself does not provide routines for matrix
algebra, however, a matrix package has been proposed by IBM in 1999 (see
[5, 6]) and has been submitted to the Java Community Process Program [7].
Unfortunately, the draft has been withdrawn due to slow development progress.
Therefore, a number of other libraries have been developed, with JAMA [8] and
Colt [9] being the most common. JAMA provides a standard implementation
for dense two-dimensional double matrices and is used inside many other pack-
ages to calculate the inverse of a matrix or perform a decomposition. Colt also
supports sparse matrices as well as three-dimensional matrices with double val-
ues or Java objects. Other packages are commons-math by the Apache Software
Foundation [10], Java Vecmath from the Java3D library [11] or Matrix Toolkits
for Java (MTJ) [12].

However, some of these libraries have not received updates within the last
years, and most of them have been developed for Java 1.4. Thus, they do
not support the new language features of Java 5, such as Generics, providing
type safety at compile time [13]. They also lack some basic functionality, such
as import and export filters or additional functions such as sin, cos, mean or
variance. Many of the libraries do not even support sparse or object matrices,
or three-dimensional matrices.

As a matter of fact, the biggest drawback is the difficulty to combine an
existing matrix library with another one or with your own implementation.
This is desirable, as each of the packages has its own advantages or weaknesses,
which becomes clear in table 1 showing a comparison between our software and
the most common matrix libraries for Java.

Only Colt and MTJ are easily extendable as they provide abstract classes
which can be extended, while an interface with more than 20 methods has to
be implemented to extend commons-math.

In the following sections, we will present the Universal Java Matrix Package
(UJMP), a novel matrix library which has several major advantages over existing
software packages: (1) exchangeability of matrix implementations due to a strict
separation of programming interface and its implementation, (2) extensibility
due to a coherent class hierarchy, and integration of existing matrix packages

2



D
RAFT

Table 1: Comparison of our Universal Java Matrix Package (UJMP) with other
common matrix libraries for Java.

U
JM

P

Ja
m

a

C
ol

t

M
T

J

co
m

m
on

s-
m

at
h

ve
cm

at
h

extendable + − + + � −
dense matrices + + + + + +
sparse matrices + − + + − −
2D matrices + + + + + +
3D matrices + − + − − +
4D matrices + − − − − +
matrices >4D + − − − − −
> 231 rows/columns + − − − − −
object entries + − + − − −
generic cell entries + − − − − −
matrices > RAM + − − − − −
entry iterators + − + + − −
advanced operators + − + − − −
import/export filters + − − + − −
visualization methods + − − − − −

and their algorithms, (3) direct access to various storage implementations (e.g.
files or databases), (4) support for very large matrices and an innovative way of
accessing data in multiple dimensions, (5) the ability to handle arbitrary data
types equipped with a convenient conversion mechanism, and (6) visualization
methods with support for very large matrices.

2 Concepts for a Novel Matrix Package

During our daily work it has become obvious, that none of the existing Java
matrix libraries completely fulfilled our demands and so we started to collect
requirements for a novel and universal approach.

Most importantly, a matrix library must be able to store large amounts
of data in big matrices, with support for more than two or three dimensions.
As described above in table 1, none of the existing libraries can handle multi-
dimensional matrices or matrices with more than 231 rows or columns. How-
ever, multi-dimensional matrices are neccessary e.g. in physics or when three-
dimensional data with a time component is processed (e.g. in functional mag-

3



D
RAFT

Matrix

SparseMatrix

ObjectMatrix

DoubleMatrix

DoubleMatrix2D

GenericMatrix<T>

GenericMatrix2D<T>

DenseDoubleMatrix

DenseDoubleMatrix2D

DenseMatrix

SparseDoubleMatrix

SparseDoubleMatrix2D

Figure 1: Interface hierarchy of UJMP. For simplicity, only interfaces relevant
for double matrices are shown.

netic resonance imaging). Additionally, the library should be easily extendable
through import and export filters and support various data sources, includ-
ing main memory, hard disk, or databases. It should provide the user with
processing methods for numerical data, text or other objects, and include a
graphical interface for data visualization, avoiding the need to export data to
other programs for this purpose. In the following sections, we will present a
novel architecture which fulfills the required demands.

2.1 Interface and Class Model

One of the most important aspects of our Universal Java Matrix Package is the
architecture of the class hierarchy and its interfaces. This design primarily sup-
ports extensibility and exchangeability of the matrix implementation, whereas
this goal has been neglected by other libraries. As mentioned above, Colt and
MTJ can be extended easily, but only within the limitations of their class def-
inition. For instance, there is no way for Colt to support more than three
dimensions, and MTJ cannot be modified to allow for other data types than
double. Combining two libraries is thus extremely difficult, as the interfaces are
not compatible to one another.

In order to overcome this limitation, our library makes extensive use of in-
terfaces encapsulating the desired functionality, which renders the architecture
independent from the actual implementation. Fig. 1 shows the interface hierar-
chy for double matrices; the structure for other types such as float or boolean is
similar, but is omitted for simplicity. For convenience, we support the following
object types and Java primitives as matrix cell entries: boolean, byte, char,
Date, double, float, int, short, long, String, Object and generic objects. Sup-
port for BigInteger and BigDecimal is currently under development. All matrix

4



D
RAFT

interfaces inherit from Matrix, offering the functionality shared by all matrix im-
plementations independent of their data type and dimensionality, e.g. methods
to query size or content type, import and export functionality and data process-
ing methods. ObjectMatrix and GenericMatrix define the methods needed for
handling objects, i.e. the getters and setters getObject() and setObject() for
their entries. For a generic matrix, the object type of the cells can be specified,
e.g. GenericMatrix<MyObject>.

DoubleMatrix is an interface which inherits from GenericMatrix<Double>

which makes getObject() return a Double object. In addition, it declares
getDouble() and setDouble(), allowing a matrix also to return double primitives
instead of Double objects, as conversion between these types is unnecessary and
time-consuming. While the interfaces defining dense and sparse matrices re-
main empty, DoubleMatrix2D adds a more efficient method to access cells in a
two-dimensional matrix, as will be discussed in section 2.5. Three-dimensional
matrices do not have their own interface definition, as they will be handled as
ordinary multi-dimensional matrices.

For most interfaces, a template implementation [14] is provided (e.g.
AbstractDenseDoubleMatrix2D), delivering the default functionality for this ma-
trix type, i.e. operations for addition, subtraction, etc. Some methods in this
template class are declared as final, since they may not be overriden. isSparse(),
for instance, must always return true in a sparse matrix implementation. Other
methods are not final providing the default implementations of algorithms, e.g.
the computation of plus or minus. These methods may be overridden in derived
classes, when custom implementations are desired. For example, our wrapper
for the Colt library will use Colt’s linear algebra functions and fall back to our
implementation for operations not supported by Colt (e.g. calculation of the
average value or visualization).

Besides interfaces and abstract classes, our library offers a number of de-
fault matrix implementations for the most common use cases. Two-dimensional
implementations are available for dense matrices, with data stored in a two-
dimensional array in memory, while another implementation uses a binary file
on disk, thus enabling the software to handle matrices that do not fit into main
memory.

For sparse matrices, we offer a reference implementation using a HashMap

which may be supplemented in the future with other storage formats, such
as compressed row storage (CRS). In addition, we have incorporated matrices
linking to images, Excel files, or tables in an SQL database. As mentioned
above, the intrinsic implementation becomes secondary, provided it obeys our
interface definition.

2.2 Adaptors to Other Matrix Libraries

As mentioned in section 1, well-tested matrix libraries are available for Java,
most of them being stable for years. They provide implementations specialized
for fast matrix computations with advanced decomposition methods, and it is
a challenging task to offer a new implementation with the same performance

5



D
RAFT

UJMP
Interfaces

UJMP
Implementations

Colt JAMA

MTJ Vecmathcommons-math JMatrices

Figure 2: Overview of matrix implementations supported by our software.

and reliability. To benefit from those packages, we have created adaptors [14]
making their implementation available to our matrix library, which is facilitated
through the open architecture described in section 2.1.

The adaptor to a two-dimensional dense double matrix from the Colt li-
brary, for instance, inherits from AbstractDenseDoubleMatrix2D which provides
a large number of processing functions for this matrix type (plus, minus, aver-
age, variance, etc.). Only the getters and setters for the cell entries remain to be
implemented, and are mapped to a Colt matrix stored within our adaptor class.
Computations supported by Colt are overridden in the adaptor, allowing Colt to
calculate plus, minus and multiply, while our library is used for other functions
(average, variance, import, export, visualization, etc.). On the other hand, our
software relies on other libraries for some functions. In particular, we do not sup-
port decomposition methods (e.g. eigen value or singular value decomposition)
at the moment. Fig. 2 shows the matrix libraries which can be used together
with our software. To offer a central point for specifying the matrix implemen-
tation to use, we employ the factory pattern [14]. MatrixFactory.sparse(x,y),
for instance, can be configured to create a matrix from the Colt library. Switch-
ing the underlying matrix implementation at runtime is also possible as well as
intermixing different implementations, e.g. using Colt for sparse and JAMA for
dense matrices.

2.3 Adaptors to Other Data Sources

Our software is not limited to integrating other matrix implementations, as
it has been designed to handle any type of data independent of the underlying
storage implementation, provided that it can be transformed into matrix format.
This evidently applies to data aligned in two-dimensional grids or 3D cubes,
but also to one-dimensional lists or high-dimensional data. Through the use
of adjacency or incidence matrices, graphs with arbitrary entities as nodes can
be tranformed into a matrix representation and thus can be processed with our
software.

In fact, there are only a few prerequisites to render arbitrary data repre-

6



D
RAFT

UJMP
Interfaces

Binary FileJDBC Database
Table

CSV File

WAV File Image
File

Excel Sheet Access
Database

MySQL

PostgreSQL

Derby

HSQLDB

Figure 3: Overview of the data sources which can be connected to our software.

sentable in matrix format. In particular, data must be (1) aligned orthogonally
and not e.g. hexagonally, (2) ordered in the sense that, for each pair of cells,
a relation exist with one cell being e.g. “lower” or “more left” than the other,
(3) non-ambigously addressable, i.e. every item has a position with no two cells
sharing the same coordinates, and (4) defined in size and dimensionality.

Data complying with these conditions can easily be mapped to a matrix in
our framework with only getter and setter methods and getSize() remaining to
be implemented. Fig. 3 shows an overview of data sources which are supported
in the current version of our library. As can be seen, we provide interfaces to
a number of databases e.g. MySQL, PostgreSQL, HSQLDB, or Derby. Other
databases should work as well, as long as a suitable JDBC driver exists. The
user can submit connection details and a select statement to these adaptors and
the query result will be wrapped inside a matrix with as many rows and columns
as the underlying SQL ResultSet. Accessing single cells in this matrix moves
the cursor within this ResultSet accordingly and the specified entry is retrieved.
When the JDBC driver of the database can handle query results which do not fit
into main memory by partitioning the ResultSet, this also holds for the adaptor
matrix, giving the user direct access to large data sources. The same feature
is available in adaptors to binary files on disk, including WAV audio or bitmap
files. In addition, we have implemented a read-only adaptor for CSV files which
allows row-wise access to large amounts of data not fitting into main memory.
We are not aware of any other software that can handle these files in a similar
way. Without our library, the only work-around is to write a script file for
preprocessing, which becomes impractical when more advanced calculations are
required.

Import and export from Microsoft Access databases or Excel sheets is also
supported, however, the libraries used for reading the data (Jackcess and JEx-
celApi) require that the content fits into main memory.

We would like to mention that our software also provides adaptors for Java

7



D
RAFT

Matrix

Calculation

Matrix Matrix
Calculation

COPY:

LINK:

ORIG:

Matrix
Calculation

Figure 4: Illustration of the different calculation modes.

collection classes, making a List, a Set or a Map adressable as an ordinary matrix.
This way it is possible e.g. to add a number of double values to a List and use
our software for visualization or to calculate the average value of the entries.

2.4 Calculations

For most computations executed on a matrix of data values, three different
processing modes can be desired.

(1) An intuitive option is to perform the operation on the original data and
return a new matrix with the calculated values. In this case, the resulting
matrix and also the original data are still available and can be used for further
processing.

(2) In other cases, creating a new matrix object is not intended, especially
when the source matrix is large, e.g. a table in a SQL database. For example,
a user may want to round all double values in a table to the closest integer
number. The desired behavior is to adjust all values directly in the database
without the need to copy the data to a new matrix and write back the result
afterwards. The drawback in this scenario is that the original data is destroyed
after processing.

(3) A third way of processing is to return a different view on the data. Using
the same example as above, a “calculation matrix” is returned which computes
the rounded value from the original data each time a cell is requested by the
user, thus leaving the original data unchanged.

The calculation modes are illustrated in Fig. 4. However, not all of these
modes may be available depending on the calculation. Entry-wise operations
such as abs, sin, cos, tan, round, etc. support all of them, while operations
changing the size of a matrix, cannot modify the original.

Calculation methods are encapsulated in separate Java classes with a similar
structure of interfaces and abstract classes as for matrices. As a result, not only
the data storage implementation of our library can be exchanged, but also the
underlying calculation engine. E.g. for calculating the inverse of a matrix, our
library can either use the implementation of Colt, JAMA, commons-math or
MTJ.

8



D
RAFT

We have done performance tests, comparing calculations with our matrix
library to others, which can be found on our web page [15]. We found that the
Universal Java Matrix Package is among the fastest libraries for matrix multi-
plication and calculating the transpose. Interestingly, it is not possible to name
a single best library, as the results vary a lot depending on the operating system
and computer architecture. In this light, it makes sense that our software can
integrate other libraries, so that the user can chose the fastest implementation
for his environment.

It should also be mentioned, that we provide interfaces to Matlab, Octave,
R, and GnuPlot, allowing the user to use their computation methods or visual-
ization capabilities if desired.

2.5 Getter and Setter Methods

Accessing data in a multi-dimensional matrix is not as straightforward as it
at first seems. To specify the position of a cell in each dimension, the same
number of arguments in a method is required. For two- or three-dimensional
matrices, the methods getDouble(x,y) or getDouble(x,y,z) can be declared eas-
ily, however, as the number of dimensions increases, it becomes impractical to
enumerate all parameters separately. In this case, transmitting an array of
coordinates is preferred, the size of which can be adjusted as required.

In this scenario, however, there would be different methods depending on
the dimensionality, which makes it tedious to create matrix functions. E.g. a
subtraction function would have to be written several times, for matrices with
two parameters, three parameters and for the array type. Leaving out the
methods for lower dimensions is not an option, as an array would have to be
created each time a cell entry is set or retrieved, what decreases performance
and impairs readability of the program code.

With the new language features of Java 5, a solution for this dilemma has
arrived. Variable arguments lists (Varargs) can automatically convert a number
of parameters into an array of objects [13], thus mapping getDouble(x,y) and
getDouble(x,y,z) to the same method getDouble(long... pos). pos is an array
filled with as many arguments as the user has provided. This makes it possible
to have a single method for matrices with an arbitrary number of dimensions,
with only the length of the array varying. The requirement that the variable
argument list must be the last parameter in a function remains the only restric-
tion. Accordingly, the new value for the cell entry must be the first parameter
within the setter function: setDouble(double v, long... pos).

However, for every call of a getter or setter method, an array object is
created implicitly, which is more time consuming than the passing of the single
coordinates, as free memory first has to be allocated. In addition, used arrays
must be disposed of by the garbage collector when they are not needed anymore,
which also has a negative impact on performance.

As a reference value, it takes on average 0.8 seconds to set all entries in a

9



D
RAFT

10, 000x10, 000 double matrix on current hardware1, when the arguments are
passed directly, and 3.2 seconds using Varargs.

A possible work-around may be to have the user create a number of position
arrays and reuse them as often as possible, changing their values when required.
However, this method annihilates the intuitive way of entering coordinates in a
variable argument list and there is no advantage in comparison to passing the
array itself.

It is preferable to equip a two-dimensional matrix with a
getDouble(long x,long y) method in addition to the Varargs method.
This method is declared in the interface DoubleMatrix2D, whereas DoubleMatrix

declares the Varargs method. Depending on the interface used to access the
implementation, a call to getDouble(x,y) will be mapped to one of the two
implementations, allowing to decide between easy access in multiple dimensions
and high performance for the two-dimensional case.

As you have noticed above, we use 64-bit long values to specify the location
of a cell. Although it is not possible in Java to have arrays with more than 231

entries (as int values are signed only 31 bit remain), there may be examples,
in which access to data in larger matrices is required, e.g. when the matrix
is sparse. However, also dense matrices can hit the upper size limit, e.g. it is
impossible to address single bytes in a file larger than 2GB when int coordinates
are used.

The time to convert a long value into an int is not negligible, although it is
shorter compared to the creation of arrays for the Varargs coordinates. Using
the same example setup as described above, setting matrix entries via two int

coordinates takes on average 0.5 seconds and is faster than type-casting the long

values.
Therefore, two-dimensional matrices are equipped with an additional method

getDouble(int x,int y), which avoids the type cast for matrix content ad-
dressed with less than 231 bit. In other cases, e.g. when the entries are stored
in a file on disk, long values are used and the type cast is required for int

arguments.

2.6 Automatic Entry Type Conversion

In most cases, data stored in a matrix is strictly specified, e.g. working on a
mathematical task requires matrices with double values. In other cases, float or
int values are preferred, while String values are used for text processing tasks.
As described above, our library allows for specification of the data type and
provides appropriate interfaces. In particular, DoubleMatrix is used for double
precision numbers, StringMatrix for text and ObjectMatrix for Java objects. A
GenericMatrix can be configured with a custom object type, making Java enforce
the correct format for cells at compile time, generating an error if the user tries
to assign inappropriate data.

1Intel Core 2 Duo T8300 2.4 GHz, 800 MHz FSB, 3 MB Cache, Java 1.6 Update 11,
Windows Vista 64, 4GB 2xPC2-5300 DDR2 SODIMM (667 MHz)

10



D
RAFT

"1.2" 1

"1.2"

1.2f

getAsString()

getAsFloat()

1l

true

getAsInt()

getAsLong()

getAsBoolean()

Figure 5: Automatic type conversion of a String into other formats.

However, it may also be desirable to have greater flexibility regarding the
data stored within a matrix. For example, when a CSV file is imported from
disk, all entries are String values at first and additional knowledge is required to
decide whether a value should be treated as a String, double or int, etc. Con-
verting the entire matrix into the desired format may be an adequate prepro-
cessing step which, however, is only appropriate when all entries share the same
target type. In mixed data formats the first column may contain a label while
the remaining columns represent numeric measurements. Since transforming all
data into double values would destroy the label information, the only choice is to
convert each entry into the desired format and use an ObjectMatrix for storage.
As all cells are objects in the transformed matrix, reading data requires type
casts and exception handling in case that the actual differs from the expected
object type.

In order to simplify this usage scenario, we have implemented an automatic
type conversion mechanism, transforming the data as desired. In addition to the
method getDouble() for double matrices, a method getAsDouble() is provided
for all matrices, which converts the data to a double value. Numbers such
as int or float are cast to double, while String values are converted using
Double.parseDouble(). Exceptions are automatically caught, and Double.NaN

is returned when the conversion was unsuccessful. Conversion methods are
provided for all types described in section 2.1, e.g. getAsInt(), getAsFloat(),
getAsString(), etc.

Fig. 5 exemplarily shows the conversion of a String into different target
types. This mechanism allows the user to choose the best data representation
according to each use case, without having to implement his own conversion
routine. Thus it becomes feasible to combine heterogeneous data in a single
matrix and decide depending on the context how it should be processed. The
same feature is known from Excel sheets, in which each cell can hold either
numbers, text, or date and time values.

11



D
RAFT

2.7 Coordinate Iterators

It often becomes necessary to loop over entries in a matrix, e.g. in order to apply
a computation or to search for items with certain properties. For this scenario,
the iterator pattern [14] provides a convenient solution. In our software, we
have included the method allCoordinates(), which returns an iterator looping
over all possible positions in a matrix. At each step an array of long values
is returned defining the current position. For each iterator only one array is
created with its entries being modified, as the iterator is moved to the next
position. This procedure has the advantage over creating a new array for each
step, that performance remains high and memory is not wasted for creating
arrays.

However, when the matrix is sparse, it is not feasible to iterate over all
entries comprised in it. Instead, a second iterator availableCoordinates() can
be used, which enumerates present storage locations, as probably most cells in
a sparse matrix remain empty. This iterator is of particular importance when
the matrices are very large, as looping over all coordinates would be impractical
in this case.

The Colt library, for example, provides a sparse matrix implementation and
a method getNonZeros() to return its non-zero entries. However, this method
checks for each possible entry whether it contains a zero value or not, which
requires a long time for large matrices. On the other hand, applying a function
to a sparse matrix using forEachNonZero() works properly and only present
entries are considered.

Listing 1 shows an example for summing up entries in a 4-dimensional sparse
matrix, which is also appropriate for higher dimensions.

Listing 1: Example for summing up entries in a 4-dimensional matrix.
// create a 4D sparse matrix 100 x100x100x100

Matrix m = MatrixFactory.sparse (100 ,100 ,100 ,100);

// set entry at [5,5,5,5] to 1.0

// and entry at [10 ,10 ,10 ,10] to 2.0

m.setAsDouble (1.0, 5, 5, 5, 5);

m.setAsDouble (2.0, 10, 10, 10, 10);

// perform the calculation

double sum = 0.0;

for(long[] pos : m.availableCoordinates ())

sum += m.getAsDouble(pos);

System.out.println(sum); // prints 3.0

Execution of this particular example took less than 10ms on the same reference
platform as above, whereas iterating over all possible positions requires more
than 10s. This is example is not supposed to benchmark performance, but
should rather point out the importance of these iterators also in terms of code
design: Without iterators, the user would have to nest 4 separate for-loops in
another, which becomes impractical as the number of dimensions increases. In
addition, our library provides two iterators named selectedCoordinates(). One

12



D
RAFT

of them takes a multi-dimensional array of long values as argument, representing
the coordinates, over which the user intends to iterate. The second method of
the same name uses a String to encode the desired selection in a style similar
to Matlab (for an introduction to Matlab see e.g. [16]). The String "1,3-5;*",
for example, returns an iterator over all columns and rows 1, 3, 4 and 5.

2.8 Matrix Annotation

In many cases, data is only valuable when additional information about it is
available. For income data it is crucial to know, whether the currency is US$,
Yen or e . A time series of measurements has a different meaning when the
samples are taken every day or every millisecond. In extreme cases, data may
be rendered useless when this meta-information is lost.

We have therefore provided an option to attach annotation to each matrix.
This meta-information can be used to assign a name to a matrix or to label a
row, column, or the entire axis. The annotation object is not set by default and
is created on demand thus saving memory if no meta-information is required.
Internally, an annotation object stores the values in a HashMap with the key being
the position of the label. However, custom implementations are also allowed,
since the structure of an annotation object is defined in its own interface.

Annotation may not only be used for labeling data, but also for specifying
e.g. data type or default value for a column, such as in a table of an SQL
database. Consequently, annotation objects are not limited to storing String

values but arbitrary objects can be assigned as label, axis label, or row/column
label and also higher dimensional data can be labeled in this scheme.

Depending on the operation performed on a matrix, the annotation is copied,
modified or discarded. E.g. when the sum of two matrices of the same size is
calculated, the resulting matrix will contain the unmodified annotation data of
the first matrix. A transpose function will rotate annotation in an appropriate
way, while other operations may eliminate annotation in the result, e.g. axis
labels are lost when a 1x1 matrix is returned which contains the maximum value
of all entries in a matrix.

2.9 Visualization

All of the matrix libraries shown in table 1 do not provide visualization methods.
We feel, that this is a major drawback, as it leaves the user with two choices. He
can either include a visalization library into his software project, or start another
program such as Matlab each time a graphical representation is required. The
first option would require to convert the data into a format useable by the
library with its interfaces and classes, while, for the second option, he would
have to export the data to disk and load it into another software. However,
both methods have to copy the data in some way, which becomes impractical
for large matrices.

Therefore, we provide our own visualization methods with a strict adherence
to the MVC (Model-View-Controller) pattern [14]. Since all data is comprised

13



D
RAFTFigure 6: Visualization of a very large matrix.

within a matrix, the visualization routine must merely perform a mapping from
this data to the pixels on the screen, what requires no additional storage and
allows large matrices to be displayed.

Listing 2 creates a very large matrix and displays an editor together with
a two-dimensional structure plot, where cells are marked in different colors ac-
cording to their values (see Figure 6). In this example, the largest part of the
matrix remains empty, with the small area containing data clearly visible in
the upper left corner. This demonstrates, that visualization is an extremely
helpful tool, when information must be extracted from large files, as errors in
the data become obvious and areas with relevant information can be discerned
from unuseable data.

Listing 2: Visualizing a very large matrix.
Matrix m1, m2, m3;

long rows = 50000; long cols = 50000;

// create a 20GB matrix in a file on disk

m1 = new DenseFileMatrix2D(rows , cols);

// select a small portion of the matrix

// and fill it with random values

m2 = m1.select(Ret.LINK ,"1000 -5000;1000 -3000");

m2.rand(Ret.ORIG);

// select another submatrix and subtract 2.0

m3 = m1.select(Ret.LINK ,"1000 -2000;1000 -2000");

m3.minus(Ret.ORIG , false , 2.0);

m1.showGUI (); // visualize the matrix

Although the example matrix requires 20GB of disk space, it can be displayed

14



D
RAFT

in a few seconds, since only a small part of the data is actually relevant to create
the visualization. Size and speed of the hard disk are the only limiting factors.

3 Summary and Discussion

In this paper, we have presented the Universal Java Matrix Package (UJMP),
a novel and innovative matrix library for Java. Our requirement to cope with
large amounts of data, and the fact that no existing library was able to fulfill
all our demands, has convinced us to design a new library which is able to han-
dle very large dense, sparse and multi-dimensional matrices as well as graphs
within the same framework, even when the data does not fit into main memory.
A major feature of our software is the extendable architecture, which integrates
various data sources as well as existing matrix libraries, incorporating their in-
dividual strenghts. In particular, the import and export functions have to be
mentioned which support a wide range of file formats and databases. Calcula-
tions can be performed in different “modes” (see section 2.4) to give the user
the utmost control on how data is processed. In addition, visualization methods
are provided, with the ability to deal with large data sets.

Most of the features described in this paper have already been implemented
and are part of our library, facilitating our work with data sources in Java. The
here described matrix library also serves as the mathematical back-end of our
second Java project, the Java Data Mining Package (JDMP) [17]. However,
weaknesses are still present regarding calculations or the graphical interface,
and also the sometimes incomplete integration of external data sources is still
an issue.

We also lack some standard matrix implementations and calculations, e.g.
compressed row storage (CRS) for sparse matrices or decomposition methods.
However, it is not planned to include those in the near future, since we do not
want to invent the wheel twice and our primary goal is the integration of other
libraries making their features and performance available in our framework.

Another important issue is the integration of parallel computations, since
current processors usually have more than one core already and will defnitely
be multi-core in the future. Currently, we can employ other matrix libraries
such as Parallel Colt for this purpose, but we also think about integrating ad-
ditional frameworks, e.g. Hadoop [18], Terracotta [19] or the Java Parallel
Processing Framework [20]. Other interersting concepts such as Parallel Arrays
are discussed in JSR166 [21] for future Java versions, which may open up new
optimization opportunities for matrix calculations.

Another issue we would like to improve is the availability of documentation,
which is rather limited at the moment, making it unnecessarily hard to get
acquainted with our library.

It has to be emphasized, that our software is licensed under LGPL, which
allows it to be included in commercial applications. Source code and jar files are
freely available through our website [15] in the hope that the here introduced
matrix library will attract many users and developers.

15



D
RAFT

References

[1] W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling, Nu-
merical Recipes in C: The Art of Scientific Computing, 2nd edition. Cam-
bridge: Cambridge University Press, 1992.

[2] G. H. Golub and C. F. V. Loan, Matrix Computations, 3rd edition. Johns
Hopkins University Press, 1996.

[3] University of Tennessee, “LAPACK,” 2008, http://www.netlib.org/
lapack/.

[4] D. Doolin, J. Dongarra, and K. Seymour, “JLAPACK - compiling LAPACK
Fortran to Java,” Scientific Programming, vol. 7, no. 2, pp. 111–138, 1999.

[5] J. E. Moreira, S. P. Midkiff, and M. Gupta, “A standard Java package
for technical computing,” Proceedings of the Ninth SIAM Conference on
Parallel Processing for Scientific Computing, 1999.

[6] P. V. Artigas, M. Gupta, S. P. Midkiff, and J. E. Moreira, “High per-
formance numerical computing in Java: Language and compiler issues,”
Proceedings of the 12th Workshop on Language and Compilers for Parallel
Computers, 1999.

[7] J. E. Moreira, “Java multiarray package,” 2005, http://jcp.org/en/jsr/
detail?id=083.

[8] The MathWorks and the National Institute of Standards and Technology
(NIST), “JAMA: A Java matrix package,” 2005, http://math.nist.gov/
javanumerics/jama/.

[9] CERN – European Organization for Nuclear Research, “Colt,” 1999, http:
//acs.lbl.gov/∼hoschek/colt/.

[10] Apache Software Foundation, “Apache commons mathematics library,”
2008, http://commons.apache.org/math/.

[11] Java.net, “The vecmath package,” https://vecmath.dev.java.net/.

[12] B.-O. Heimsund, “Matrix toolkits for Java (MTJ),” 2006, http://ressim.
berlios.de/.

[13] J. Gosling, B. Joy, G. Steele, and G. Bracha, The Java Language Specifi-
cation, 3rd edition. Boston, MA: Addison-Wesley, 2005.

[14] J. W. Cooper, The Design Patterns Java Companion. Addison Wesley,
1998.

[15] H. Arndt, M. Bundschus, and A. Naegele, “Universal Java Matrix Package
(UJMP),” 2009, http://www.ujmp.org.

16



D
RAFT

[16] S. Otto and J. P. Denier, An Introduction to Programming and Numerical
Methods in Matlab. Berlin: Springer, 2005.

[17] H. Arndt, M. Bundschus, and A. Naegele, “Java Data Mining Package
(JDMP),” 2009, http://www.jdmp.org.

[18] Apache Software Foundation, “Apache hadoop,” 2008, http://hadoop.
apache.org/.

[19] Terracotta Inc., “Terracotta,” 2009, http://www.terracotta.org/.

[20] Laurent Cohen, “Java parallel processing framework,” 2009, http://www.
jppf.org/.

[21] D. Lea, “JSR-166,” 2008, http://gee.cs.oswego.edu/dl/
concurrency-interest/.

17


